

Retrieve, Caption, Generate: Visual Grounding for Enhancing Commonsense in Text Generation Models

Steven Y. Feng¹, Kevin Lu², Zhuofu Tao³, Malihe Alikhani⁴, Teruko Mitamura¹, Eduard Hovy¹, Varun Gangal¹

¹Carnegie Mellon University, ²University of Waterloo ³University of California Los Angeles, ⁴University of Pittsburgh

AAAI 2022

What is Concept-to-Text Generation?

- Constrained text generation: produce natural language outputs under certain pre-conditions (e.g. particular words must appear in the outputs)
- Data-to-text NLG: produce natural language descriptions of structured or semi-structured data
- \blacktriangleright Common task formulation: set of inputs \rightarrow natural language
 - Inputs can be thought of as concepts, e.g. higher-level words or structures that play an important role in the generated text
 - Think of these tasks as "concept-to-text generation"

Motivation for Visual Grounding

Are there simple and effective approaches to improving performance on concept-to-text generation that comes from:

Visual grounding or multimodal information in images?

- Large pretrained NLP models still struggle with commonsense tasks that humans can reason through easily¹
- Hypothesis: commonsense information contained in modalities like vision beyond text that can be exploited
- VisCTG: Visually Grounded Concept-to-Text Generation

Generative Commonsense Reasoning

AKA CommonGen task

- Generate logical sentences from given sets of input concepts
- **Examples**:
 - ► {horse, carriage, draw} → The carriage is drawn by the horse.
 - ► {listen, talk, sit} → The man told the boy to sit down and listen to him talk.

Figure 1: An example of the dataset of COMMONGEN. GPT-2, UniLM, BART and T5 are large pre-trained text generation models, *fine-tuned* on the proposed task.

Why CommonGen?

Difficult instance of concept-to-text generation that assesses:

- 1. Relational reasoning abilities using commonsense knowledge
- Compositional generalization capabilities to piece together different/unseen concept combos
- Broadly applicable and encompassing task formulation and evaluation methodology
- Growing interest in the commonsense capabilities of NLP models

Dataset Splits and Baseline Models

Created new dev, test splits (dev_{CG} , $test_{CG}$) from original dev set (dev_{O}) since original test set ($test_{O}$) is hidden. Training set ($train_{CG}$) was unaltered

Stats	Train_{CG}	Devo	Testo	Dev _{CG}	Test _{CG}
# concept sets	32,651	993	1,497	240	360
# sentences	67,389	4,018	7,644	984	1583

Baselines: trained 4 seq2seq Transformer models: BART-base, BART-large, T5-base, T5-large. Performance exceeded original reported scores

Thorough Baseline Analysis – Qualitative Study (1)

Many baseline generations contain following issues:

- 1. Lack commonsense and logic
 - 1. Improper ordering/piecing of sentence segments
 - body of water on a raft"
 - 2. Does not understand what certain nouns can/cannot do
 - "A dog checking his phone on a pier"

Thorough Baseline Analysis – Qualitative Study (2)

Many baseline generations contain following issues:

- 2. Not fluent or coherent, e.g. phrases and not full sentences
- 3. Missing important words such as nouns
 - "A [?] listening music and dancing in a dark room"
- 4. Generally generic and bland (dull response problem²)
 - "Someone sits and listens to someone talk"

Motivation for Images and Captions (1)

- Images representing everyday scenarios prevalent for diff. concept sets
- ► E.g. searching "{cow, horse, lasso} \rightarrow images of cowboys riding horses and lassoing cows, unlike baseline generation of "A cow is lassoing a horse."
- Everyday images similar to those in captioning datasets like MSCOCO, so pretrained captioning models should work well
- Textual corpora suffer from "reporting bias"³
 - Everyday things underrepresented compared to "newsworthy" things
 - Bias can be possibly dampened using visual data and models

Motivation for Images and Captions (2)

Image Retrieval and Captioning

- Retrieve images for the concept sets in our three dataset splits
- Search engine is more generalizable and can cover more concept sets
- Google Images performs better compared to Bing and DuckDuckGo
 - Many input keywords not included and homonyms not handled well
- ▶ PyTorch-based implementation⁴ of the FC image captioning model⁵
 - ▶ Image into deep CNN \rightarrow caption generation via LSTM
 - Pretrained on the MSCOCO dataset with Resnet-101 image features

Caption Selection and Input Augmentation

- Captions S_c = {c₁, c₂, ..., c_n} for each concept set are sorted by descending coverage to the concept set to obtain S_c' = {c₁', c₂', ..., c_n'}
- If two captions tied for coverage, kept in original order (by relevance)
- Retrieved images and captions cover fraction of concept set and quality varies
 Jusing multiple captions for generation may be better
- Try using different numbers of top captions within S_{c'} a parameter called Number of Top Captions (NTC); we try NTC = 1, 2, 3, 5, 7, 10
- Captions are used to augment the inputs to the models: {concept_set} <s> {caption_1} <s> {caption_2}

Augmented Input \rightarrow Final Generation
wave fall board surfer $\langle s \rangle$ a surfer riding a wave on a surfboard \rightarrow A surfer is falling off his board into the waves.
dance stage front crowd $\langle s \rangle$ a crowd of people watching a man on a stage $\langle s \rangle$ a man is holding a microphone in front of a
$crowd \rightarrow A$ man dances in front of a crowd on stage.
stand hold umbrella street <s> a woman walking down a street holding an umbrella <s> a woman walking down a street holding</s></s>
an umbrella $\langle s \rangle$ a girl holding a pink umbrella in a city $\langle s \rangle$ a man holding an umbrella in a city $\langle s \rangle$ a group of people standing
under a umbrella \rightarrow A group of people standing on a street holding umbrellas.

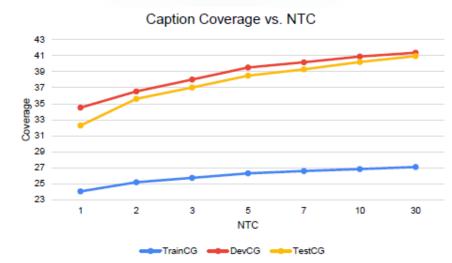


Figure 1: Graph displaying the average coverage (out of 100) by the top NTC captions in aggregate per concept set.

Experimental Setup

- Epochs with best ROUGE-2 score on the dev split are chosen for beam-search decoding on the test splits (test_{CG} and test_O)
- NTC is a hyperparam; only best value per model is selected and reported
- Conduct two human evaluations: AMT and expert linguist
 - Pairwise comparison of VisCTG and baseline model outputs
 - AMT: choose which of the two has better "Overall Quality"
 - Expert linguist: "Overall Quality", "Commonsense Plausibility", and "Fluency"
 - Three options: O1 VisCTG better, O2 baseline better, O3 both indistinguishable

Automatic Evaluation Results on test_{CG}

	BART-base $(NTC = 5)$			BART-large $(NTC = 2)$		
Metrics	Baseline	VisCTG	p-value	Baseline	VisCTG	p-value
ROUGE-1	43.96 ± 0.03	45.44 ± 0.08	1.58E-05	45.67 ± 0.25	46.91 ±0.31	1.58E-05
ROUGE-2	17.31 ± 0.02	19.15±0.21	1.58E-05	18.77 ± 0.04	20.36 ± 0.05	1.58E-05
ROUGE-L	36.65 ± 0.00	38.43±0.07	1.58E-05	37.83 ± 0.29	39.23 ±0.01	1.58E-05
BLEU-1	73.20 ± 0.28	75.65±0.78	6.94E-05	74.45 ± 0.21	78.80±0.28	6.94E-05
BLEU-2	54.50 ± 0.14	59.05±0.07	6.94E-05	56.25 ± 0.78	61.60±0.85	6.94E-05
BLEU-3	40.40 ± 0.14	44.90 ±0.42	6.94E-05	42.15 ± 0.49	47.00±0.71	6.94E-05
BLEU-4	30.10 ± 0.14	34.10±0.57	3.82E-03	32.10 ± 0.42	36.25±0.78	2.08E-04
METEOR	30.35 ± 0.35	31.95±0.07	6.94E-05	31.70 ± 0.14	34.00 ±0.14	6.94E-05
CIDEr	15.56 ± 0.10	16.84 ± 0.05	6.94E-05	16.42 ± 0.09	18.35±0.13	6.94E-05
SPICE	30.05 ± 0.07	31.80±0.28	6.94E-05	31.85 ± 0.21	34.60±0.28	6.94E-05
BERTScore	59.19 ± 0.32	61.44±0.02	1.58E-05	59.95 ± 0.29	62.85±0.30	1.58E-05
Coverage	90.43 ± 0.17	90.66±1.39	0.33*	94.49 ± 0.53	96.49±0.24	1.58E-05
PPL	80.39 ± 3.65	72.45±0.79	1.58E-05	80.37 ± 4.51	68.46±5.90	1.58E-05

	T5-b	base ($NTC = 2$	2)	T5-large $(NTC = 1)$			
Metrics	Baseline	VisCTG	p-values	Baseline	VisCTG	p-values	
ROUGE-1	44.63 ± 0.13	46.26 ±0.07	1.58E-05	46.32 ± 0.26	46.93±0.22	7.26E-04	
ROUGE-2	18.40 ± 0.14	19.78±0.30	1.58E-05	19.59 ± 0.12	20.01±0.23	0.02	
ROUGE-L	37.60 ± 0.16	38.91±0.27	1.58E-05	39.20 ± 0.21	39.52 ± 0.43	0.06	
BLEU-1	73.60 ± 0.85	76.80±0.28	6.94E-05	77.55 ± 0.35	78.65±0.21	4.65E-03	
BLEU-2	57.00 ± 0.71	60.30±0.28	6.94E-05	60.80 ± 0.28	61.55±0.35	0.07	
BLEU-3	42.75 ± 0.49	46.25 ± 0.64	6.94E-05	46.50 ± 0.00	47.10±0.57	0.11*	
BLEU-4	32.70 ± 0.42	36.10±0.85	6.94E-05	36.20 ± 0.14	36.40±0.28	0.21*	
METEOR	31.05 ± 0.49	32.70 ± 0.00	6.94E-05	33.20 ± 0.00	33.65±0.49	0.49*	
CIDEr	16.26 ± 0.25	17.65 ± 0.02	6.94E-05	17.79 ± 0.01	17.94±0.25	0.23*	
SPICE	31.95 ± 0.07	33.40±0.28	6.94E-05	33.90 ± 0.42	34.55 ± 0.21	0.03	
BERTScore	61.40 ± 0.34	62.42±0.17	1.58E-05	62.67 ± 0.09	62.72±0.03	0.34*	
Coverage	90.96 ± 1.77	94.48±1.39	1.58E-05	94.40 ± 0.02	95.95±0.45	1.58E-05	
PPL	83.04±1.62	77.50±3.86	3.16E-05	81.78±4.63	73.41 ±4.32	1.58E-05	

Trends of Automatic Metrics vs. NTC

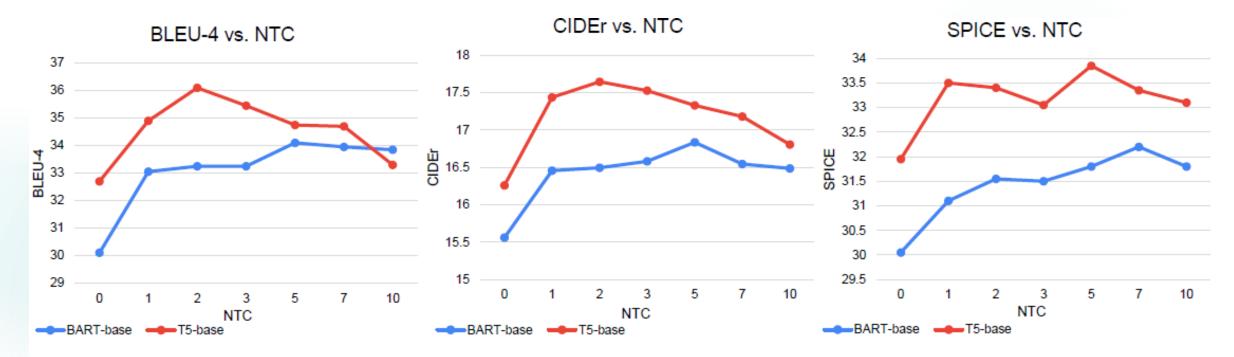


Figure 2: BLEU-4, CIDEr, and SPICE on test_{CG} over different values of NTC for BART-base and T5-base.

Human Evaluation Results on test_{CG}

Model	01	02	03	IAA
BART-base	0.45	0.33	0.22	0.72
BART-large	0.62	0.18	0.20	0.55
T5-base	0.46	0.33	0.21	0.72
T5-large	0.46	0.34	0.20	0.74

Table 9: Avg. AMT eval results on test_{CG} for overall quality. O1: VisCTG wins, O2: baseline wins, O3: both indistinguishable. Bold corresponds to higher fractional outcome between O1 and O2. All results are statistically significant based on paired two-tailed t-tests and $\alpha = 0.1$. The inter-annotator agreement (IAA) is the average direct fractional agreement (where both annotators choose O1 or O2) over all examples. See §5.2 and Appendix D for further details.

Model	Aspect	01	02	03
	Overall	0.44	0.24	0.32
BART-large	Commonsense	0.32	0	0.68
	Fluency	0.56	0.12	0.32

Table 10: Avg. expert linguist eval results on $test_{CG}$ for BARTlarge. O1: VisCTG wins, O2: baseline wins, O3: both indistinguishable. Bold corresponds to higher fractional outcome between O1 and O2 per aspect. See §5.2 and Appendix D for further details.

Automatic Evaluation Results on testo

Models\Metrics	ROUC	GE-2/L	BLE	U-3/4	METEOR	CIDEr	SPICE	Coverage
T5-base (reported baseline)	14.63	34.56	28.76	18.54	23.94	9.40	19.87	76.67
T5-large (reported baseline)	21.74	42.75	43.01	31.96	31.12	15.13	28.86	95.29
BART-large (reported baseline)	22.02	41.78	39.52	29.01	31.83	13.98	28.00	97.35
EKI-BART (Fan et al. 2020)	-	-	-	35.945	-	16.999	29.583	-
KG-BART (Liu et al. 2021)	-	-	-	33.867	-	16.927	29.634	-
RE-T5 (Wang et al. 2021)	-	-	-	40.863	-	17.663	31.079	-
T5-base VisCTG	22.83	44.98	45.749	34.722	31.809	16.173	28.808	92.92
T5-large VisCTG	23.83	45.76	47.376	36.409	33.012	16.815	29.629	95.54
BART-base VisCTG	21.73	43.43	43.235	32.291	30.86	15.187	27.403	88.98
BART-large VisCTG	23.68	45.07	48.031	36.939	33.215	17.199	29.973	94.86

Analysis of Results

- Both automatic and human evaluation results show that VisCTG greatly outperforms the baselines across all metrics and models
- Most outperforming model is BART-large, which is why we ask the expert linguist to evaluate BART-large on three aspects
- BART-large VisCTG outperforms EKI-BART⁶ and KG-BART⁷, two SOTA published CommonGen models that use external knowledge
- BLEU-4, CIDEr, and SPICE increase to a peak NTC value and taper off

Qualitative Analysis

Concept Set	{sit, chair, toy, hand}
Captions	a little girl sitting on a chair with a teddy bear <s> a small child sitting on a chair with a teddy bear <s> a young boy sitting on a chair with a skateboard <s> a man sitting on a chair with a remote</s></s></s>
Baseline	hands sitting on a chair
VisCTG	A boy sitting on a chair with a toy in his hand.
Compared Cat	
Concept Set	
conception	{jacket, wear, snow, walk}
Captions	a young boy in a red jacket is standing in the snow <s> a man in a red jacket is standing in the snow</s>
-	a young boy in a red jacket is standing in the snow <s> a</s>
Captions	a young boy in a red jacket is standing in the snow <s> a man in a red jacket is standing in the snow</s>

Concept Set	{rock, water, stand, body}				
Captions	a bird sitting on a rock in a body of water				
Baseline	a body of water standing on rocks				
VisCTG	A man standing on a rock near a body of water.				

Concept Set	{bench, bus, wait, sit}
Captions	a man sitting on a bench with a book <s> a person sitting on a bench with a laptop</s>
Baseline	A bus sits on a bench.
VisCTG	A man sits on a bench waiting for a bus.

Concept Set	{hold, hand, stand, front}
Captions	a man holding a pair of scissors in front of a wall
Baseline	Someone stands in front of someone holding a hand.
VisCTG	A man stands in front of a man holding a hand.

Concept Set	{bag, put, apple, tree, pick}
Captions	a person holding a apple in a tree <s> a bunch of apples are growing on a tree</s>
Baseline	A man is putting apples in a bag and picking them up from the tree.
VisCTG	A man puts a bag of apples on a tree.

Conclusion and Future Work

- Explored the use of visual grounding for improving the commonsense of Transformer models for concept-to-text generation, calling our method VisCTG: Visually Grounded Concept-to-Text Generation
- Showed its effectiveness on the CommonGen task using BART and T5
- Can improve image search and captioning, e.g. stronger captioning model or better selection of images during retrieval
- Can explore video captioning and image generation rather than retrieval
- Can investigate VisCTG for other NLG tasks such as WebNLG

References

- 1. Talmor et al., 2020. oLMpics -- On what Language Model Pre-training Captures. TACL 2020.
- 2. Du and Black. 2019. Boosting Dialog Response Generation. ACL 2019.
- 3. Gordon and Van Durme. 2013. Reporting bias and knowledge acquisition. 2013 Workshop on Automated Knowledge Base Construction.
- 4. <u>https://github.com/ruotianluo/self-critical.pytorch</u>
- 5. Rennie et al., 2017. Self-Critical Sequence Training for Image Captioning. CVPR 2017.
- 6. Fan et al., 2020. An Enhanced Knowledge Injection Model for Commonsense Generation. COLING 2020.
- 7. Liu et al., 2021. KG-BART: Knowledge Graph-Augmented BART for Generative Commonsense Reasoning. AAAI 2021.

Thanks for Listening!

https://github.com/styfeng/VisCTG https://arxiv.org/abs/2109.03892

- Steven Y. Feng: syfeng@cs.cmu.edu
 Website: https://styfeng.github.io/
 Twitter: @stevenyfeng
- Kevin Lu: kevin.lu1@uwaterloo.ca
 Website: https://kevin-lu.tech/
 Twitter: @KevinLu45010771
- Zhuofu Tao: z24tao@g.ucla.edu
 Website: https://www.linkedin.com/in/z24tao/

- Malihe Alikhani: malihe@pitt.edu
 Website: https://www.malihealikhani.com/
 Twitter: @malihealikhani
- Teruko Mitamura: teruko@cs.cmu.edu
- Eduard Hovy: hovy@cs.cmu.edu
- Varun Gangal: vgangal@cs.cmu.edu
 Website: https://vgtomahawk.github.io/
 Twitter: @VarunGangal