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What is Concept-to-Text Generation?

» Constrained text generation: produce natural language outputs under

certain pre-conditions (e.g. particular words must appear in the outputs)

» Data-to-text NLG: produce natural language descriptions of structured or

semi-structured data
» Common task formulation: set of inputs - natural language

» Inputs can be thought of as concepts, e.g. higher-level words or

structures that play an important role in the generated text

» Think of these tasks as “concept-to-text generation”



Motivation for Visual Grounding

» Are there simple and effective approaches to improving
performance on concept-to-text generation that comes from:

Visual grounding or multimodal information in images?

» Large pretrained NLP models still struggle with commonsense
tasks that humans can reason through easily?

» Hypothesis: commonsense information contained in
modalities like vision beyond text that can be exploited

» VIsCTG: Visually Grounded Concept-to-Text Generation



Generative Commonsense Reasoning

» AKA CommonGen task

» Generate logical sentences from

given sets of input concepts
» Examples:

» {horse, carriage, draw} - The

carriage is drawn by the horse.

» {listen, talk, sit} - The man told the

boy to sit down and listen to him talk.

Concept-Set: a collection of objects/ actions.

dog, frisbee, catch, throw

Generative Comnionsense Reasoning

w
Expected Output: everyday scenarios covering all given concepts.

A dog leaps to catch a thrown frisbee. [Humans ]
- The dog catches the frisbee when the boy throws it. '

- A man throws away his dog 's favorite frisbee expecting him |
_fo cafch it in the air. =

GPT2: A dog throws a frisbee at a football player. ~ [Machines]

UniLM: Two dogs are throwing frisbees at each other .

BART: A dog throws a frisbee and a dog catches it.

T5: dog catches a frisbee and throws it to a dog =

Figure 1: An example of the dataset of COMMONGEN.
GPT-2, UniLM, BART and T35 are large pre-trained text gen-

eration models, fine-tuned on the proposed task.

Lin et al., 2020. CommonGen: A Constrained Text Generation Challenge for Generative Commonsense Reasoning. EMNLP 2020 Findings.



Why CommonGen?

» Difficult instance of concept-to-text generation that assesses:
1. Relational reasoning abilities using commonsense knowledge

2. Compositional generalization capabilities to piece together
different/unseen concept combos

» Broadly applicable and encompassing task formulation and
evaluation methodology

» Growing interest in the commonsense capabillities of NLP models



Dataset Splits and Baseline Models

» Created new dev, test splits (devg, test-g) from original dev set (dev)

since original test set (testy) is hidden. Training set (train,g) was unaltered

67,389 4.018 7,644 984 1583

» Baselines: trained 4 seq2seq Transformer models: BART-base, BART-large,

T5-base, T5-large. Performance exceeded original reported scores



Thorough Baseline Analysis — Qualitative Study (1)

» Many baseline generations contain following issues:

1. Lack commonsense and logic
1. Improper ordering/piecing of sentence segments
» “body of water on a raft”

2. Does not understand what certain nouns can/cannot do

» “A dog checking his phone on a pier”



Thorough Baseline Analysis — Qualitative Study (2)

» Many baseline generations contain following issues:
2. Not fluent or coherent, e.g. phrases and not full sentences

3. Missing important words such as nouns
» “A?] listening music and dancing in a dark room”
4. Generally generic and bland (dull response problem?)

» “Someone sits and listens to someone talk”



Motivation for Images and Captions (1)

» Images representing everyday scenarios prevalent for diff. concept sets

» E.g. searching “{cow, horse, lasso} - images of cowboys riding horses and

lassoing cows, unlike baseline generation of “A cow is lassoing a horse.”

» Everyday images similar to those in captioning datasets like MSCOCO, so

pretrained captioning models should work well

» Textual corpora suffer from “reporting bias”3
» Everyday things underrepresented compared to “newsworthy” things

» Bias can be possibly dampened using visual data and models



Motivation for Images and Captions (2)

baseline: A holds an umbrella while standing on the street
capt: a woman walking down a street holding an umbrella

VisCTG: A woman stands on a street holding an umbrella.

{food, eat, hand, bird}
4

baseline: hand of a bird eating food
capt: a person holding a small bird in their hand
VisCTG: A bird eats food from a hand.

{cat, bed, pet, lay}

baseline: A cat is laying on a bed and petting it.
capt: a cat laying on a bed with a stuffed animal
VisCTG: A cat laying on a bed being petted.

{fence, jump, horse, rider
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baseline: A rider jumps over a fence.
capt: a horse is jumping over a wooden fence
VisCTG: A rider jumps a fence on a horse.




Image Retrieval and Captioning

» Retrieve images for the concept sets in our three dataset splits
» Search engine is more generalizable and can cover more concept sets
» Google Images performs better compared to Bing and DuckDuckGo

» Many input keywords not included and homonyms not handled well

» PyTorch-based implementation* of the FC image captioning model
» Image into deep CNN - caption generation via LSTM

» Pretrained on the MSCOCO dataset with Resnet-101 image features



Caption Selection and Input Augmentation

» Captions S, = {c,, c,, ..., c,} for each concept set are sorted by descending coverage to the concept set to

obtain S_..={c,’, c,’, ..., C;’}
» If two captions tied for coverage, kept in original order (by relevance)

» Retrieved images and captions cover fraction of concept set and quality varies

- using multiple captions for generation may be better

» Try using different numbers of top captions within S_. — a parameter

called Number of Top Captions (NTC); we try NTC =1, 2, 3,5, 7, 10 Caption Coverage vs. NTC

43
41
38

» Captions are used to augment the inputs to the models: -
L 35
{concept_set} <s> {caption_1} <s> {caption_2} .... g 33
3 31
28
27 — — o
Augmented Input — Final Generation 25 '________,_———-0'——_
wave fall board surfer < s> a surfer riding a wave on a surfboard — A surfer is falling off his board into the waves. =2 1 , , F . . 0
dance stage front crowd < s> a crowd of people watching a man on a stage <s> a man is holding a microphone in front of a NTC
crowd — A man dances in front of a crowd on stage.
stand hold umbrella street <.s>> a woman walking down a street holding an umbrella <s> a woman walking down a street holding =#=TrRinCE  =t=DaCo TestCs
an umbrella <s> a girl holding a pink umbrella in a city <s>> a man holding an umbrella in a city <s>> a group of people standing . . .
under a umbrella — A group of people standing on a street holding umbrellas. Figure 1: Graph displaying the average coverage (out of 100) by

the top NTC captions in aggregate per concept set.



Experimental Setup

» Epochs with best ROUGE-2 score on the dev split are chosen for beam-search decoding

on the test splits (test.g and testy)
» NTC is a hyperparam; only best value per model is selected and reported
» Conduct two human evaluations: AMT and expert linguist
» Pairwise comparison of VisCTG and baseline model outputs
» AMT: choose which of the two has better “Overall Quality”
» Expert linguist: “Overall Quality”, “Commonsense Plausibility”, and “Fluency”

» Three options: Ol — VisCTG better, O2 — baseline better, O3 - both indistinguishable



Automatic Evaluation Results on test-.

BART-base (NT'C' = 5)

BART-large (NTC = 2)

Metrics Baseline VisCTG p-value Baseline VisCTG p-value
ROUGE-1 | 43.96+0.03 | 45.4420.08 | 1.58E-05 | 45.67+0.25 | 46.91=0.31 | 1.58E-05
ROUGE-2 | 17.31+£0.02 | 19.15+0.21 | L58E-05 | 18.77+0.04 | 20.36=-0.05 | 1.58E-05
ROUGE-L | 36.65+0.00 | 38.43+0.07 | 1.58E-05 | 37.83=0.29 | 39.23+0.01 | 1.58E-05

BLEU-1 73.20+0.28 | 75.65+0.78 | 6.94E-05 | 74.45+0.21 | 78.80+£0.28 | 6.94E-05

BLEU-2 54.50+0.14 | 539.05+0.07 | 6.94E-05 | 56.25+0.78 | 61.60+0.85 | 6.94E-05

BLEU-3 40.40+0.14 | 4490042 | 6.94E-05 | 42.15+£0.490 | 47.00£0.71 | 6.94E-05

BLEU-4 30.10+£0.14 | 34.10+£0.57 | 3.82E-03 | 32.10+0.42 | 36.25+0.78 | 2.08E-04
METEOR | 30.35+£0.35 | 31.95£0.07 | 6.94E-05 | 31.70+£0.14 | 34.00£0.14 | 6.94E-05

CIDEr 15.56+0.10 | 16.84+0.05 | 6.94E-05 | 16.42+0.00 | 18.35£0.13 | 6.94E-05

SPICE 30.05+£0.07 | 3L.80£0.28 | 6.94E-05 | 31.854+0.21 | 34.60+0.28 | 6.94E-05
BERTScore | 59.19+0.32 | 61.44+0.02 | 1.58E-05 | 59.95+0.20 | 62.85+£0.30 | 1.58E-05
Coverage | 90.43+0.17 | 90.66+1.39 0.33% 94.49+0.53 | 96.49+£0.24 | 1.58E-05

PPL 80.394+3.65 | 72.45+0.79 | L5BE-05 | 80.374.51 | 68.46+5.90 | 1.58E-05
T5-hase (NTC' = 2) T5-large (NTC = 1)

Metrics Baseline VisCTG p-values Baseline VisCTG p-values
ROUGE-1 | 44.63+0.13 | 46.26=0.07 | 1.58E-05 | 46.32+0.26 | 46.93+0.22 | 7.26E-04
ROUGE-2 | 18.40+0.14 | 19.78=0.30 | L538E-05 | 19.59+0.12 | 20.01+0.23 0.02
ROUGE-L | 37.60+0.16 | 38.91+£0.27 | 1.58E-05 | 39.20+£0.21 | 39.52+0.43 0.06

BLEU-1 73.60+£0.85 | 76.80£0.28 | 6.94E-05 | 77.55=0.35 | 78.65+£0.21 | 4.65E-03

BLEU-2 57.00£0.71 | 60.30£0.28 | 6.94E-05 | 60.80+£0.28 | 61.55+0.35 0.07

BLEU-3 42.75+£0.49 | 46.25+0.64 | 6.94E-05 | 46.50+0.00 | 47.10+0.57 0.11%

BLEU-4 32.70+0.42 | 36.10+£0.85 | 6.94E-05 | 36.20+£0.14 | 36.40+0.28 0.21%
METEOR | 31.05£0.49 | 32.70=£0.00 | 6.94E-05 | 33.20£0.00 | 33.65+0.49 (.49*%

CIDEr 16.26+£0.25 | 17.65=0.02 | 6.94E-05 | 17.79+0.01 | 17.94+0.25 (0.23*%

SPICE 31.95+0.07 | 33.40+0.28 | 6.94E-05 | 33.90+0.42 | 34.554+0.21 0.03
BERTScore | 61.40+£0.34 | 62.42+0.17 | 1.58E-05 | 62.67+£0.09 | 62.72+0.03 0.34%
Coverage | 90.96+£1.77 | 94.48=1.39 | L58E-05 | 94.40=0.02 | 95.95+0.45 | 1.58E-05

PPL 83.04=1.62 | 77.50+£3.86 | 3.16E-05 | BL78E4.63 | 73.414+4.32 | 1L.5BE-05




Trends of Automatic Metrics vs. NTC

BLEU-4 vs. NTC CIDErvs. NTC SPICE vs. NTC
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Figure 2: BLEU-4, CIDEr, and SPICE on testc¢ over different values of NTC for BART-base and T5-base.



Human Evaluation Results on test.g

Model 0l 02 03 TAA Model Aspect 01 02 03
BART-base | 0.45 | 033 | 0.22 || 0.72 Overall 0.44 | 0.24 | 0.32
BART-large | 0.62 | 0.18 | 0.20 || 0.55 BART-large | Commonsense | 0.32 0 0.68

TS-base 046 | 0.33 | 0.21 0.72 Fluency 0.56 | 0.12 | 0.32
TS5-large 046 | 0.34 | 0.20 || 0.74

Table 10: Ave. expert linguist eval results on testce for BART-
Table 9: Ave. AMT eval results on testca for overall quality. O1:  1arge. O1: VisCTG wins, O2: baseline wins, O3: both indistinguish-
VisCTG wins, O2; baseline wins, O3: both indistinguishable. Bold able. Bold corresponds to higher fractional outcome between O]
corresponds to higher fractional outcome between O1 and O2. All  and O2 per aspect. See §5.2 and Appendix D for further details.
results are statistically significant based on paired two-tailed t-tests

and «« = 0.1. The inter-annotator agreement (IAA) is the average

direct fractional agreement (where both annotators choose O1 or

02) over all examples. See §5.2 and Appendix D for further details.



Automatic Evaluation Results on test,

Models\ Metrics ROUGE-2/L BLEU-3/4 METEOR | CIDEr SPICE | Coverage
T5-base (reported baseline) 14.63 3456 | 28.76 18.54 23.94 9.40 19.87 76.67
T5-large (reported baseline) 2174 42775 | 43.01 31.96 31.12 15.13 28.86 95.29

BART-large (reported baseline) | 22.02  41.78 | 39.52 29.01 31.83 13.98 28.00 97.35
EKI-BART (Fan et al. 2020) - . 35.945 16.999  20.583 -
KG-BART (Liu et al. 2021) - - 33.867 16.927  29.634 -

RE-T5 (Wang et al. 2021) - - - 40.863 - 17.663  31.079 -
T5-base VisCTG 22.83 4498 | 45749  34.722 31.809 16.173  28.808 92.92
T5-large VisCTG 23.83 45.76 | 47.376 36.409 33.012 16.815  29.629 95.54
BART-base VisCTG 21.73 4343 | 43.235 32.291 30.86 15.187  27.403 88.98
BART-large VisCTG 23.68 45.07 | 48.031 36.939 33.215 17.199  29.973 94.86




Analysis of Results

» Both automatic and human evaluation results show that VisCTG greatly

outperforms the baselines across all metrics and models

» Most outperforming model is BART-large, which is why we ask the expert

linguist to evaluate BART-large on three aspects

» BART-large VisCTG outperforms EKI-BART® and KG-BART/, two SOTA

published CommonGen models that use external knowledge

» BLEU-4, CIDEr, and SPICE increase to a peak NTC value and taper off



Qualitative Analysis

Captions a little girl sitting on a chair with a teddy bear <s> a small Captions a man sitting on a bench with a book <s>a person sitting
child sitting on a chair with a teddy bear <s> a young boy on a bench with a laptop
sitting on a chair with a skateboard <s>a man sitting on a Baseline A bus sits on a bench.
S Y BT VisCTG A man sits on a bench waiting for a bus.
Baseline hands sitting on a chair
VisCTG A boy sitting on a chair with a toy in his hand. Concept Set {hold, hand, stand, front}
- Captions a man holding a pair of scissors in front of a wall
{jacket, wear, snow, walk} P gap
Baseline Someone stands in front of someone holding a hand.
Captions a young boy in a red jacket is standing in the snow <s> a : : .
man in a red jacket is standing in the snow VisCTG A man stands in front of a man holding a hand.
Baseline walking in the snow wearing a furry jacket
Concept Set {bag, put, apple, tree, pick}
VisCTG A man is walking in the snow wearing a jacket. -
Captions a person holding a apple in a tree <s>
Concept Set {rock, water, stand, body} | | a bu_nch of app-les are growm-g o_n atree
Captions 2 bird sitting on a rock in a body of water Baseline A man is putting apples |rgha;t:?§eand picking them up from
Baseline a body of water standing on rocks VisCTG A man puts a bag of apples on a tree.

VisCTG A man standing on a rock near a body of water.



Conclusion and Future Work

» Explored the use of visual grounding for improving the commonsense of
Transformer models for concept-to-text generation, calling our method VisCTG:

Visually Grounded Concept-to-Text Generation
» Showed its effectiveness on the CommonGen task using BART and T5

» Can improve image search and captioning, e.g. stronger captioning model or

better selection of images during retrieval
» Can explore video captioning and image generation rather than retrieval

» Can investigate VisCTG for other NLG tasks such as WebNLG
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