

Carnegie Mellon University Language Technologies Institute

Overview

Generative Commonsense Reasoning (**monGen**): produce logical sentences from keywo Challenges: Learn commonsense reasoning fro ages and transform into coherent sentences.

Baseline: BART-base, T5-base, Bart-large, T5-l **Improvement**: Obtain images from keywords and use image captions to guide sentence generation.

Results: Improve model performance and commonsense of generated sentences.

Dataset: CommonGen

The original **CommonGen** dataset is made up of 35,141 concept sets (consisting of 3 to 5 keywords each) and 79,051 sentences, split into train, dev, and test splits.

Concept set: a collection of objects / actions, for example: { *dog*, *frisbee*, *catch*, *throw* }

Human sentences (follow common sense):

- A dog leaps to catch a thrown frisbee.
- The **dog catches** the **frisbee** when the boy throws it.

Machine sentences (do not follow common sense):

- A **dog throws** a **frisbee** at a football player.
- Two **dogs** are **throwing frisbees** at each other.

Baseline Models

BART is a denoising autoencoder for pretraining sequence-to-sequence models. It is trained by (1) corrupting text with an arbitrary noising function, and (2)learning a model to reconstruct the original text.

T5 is a unified framework that converts all text-based language problems into a text-to-text format. It first trains a large text-to-text model, then transfers the learned model to other tasks.

Retrieve, Caption, Generate: Visual Grounding for Enhancing **Commonsense in Text Generation Models**

 1 Carnegie Mellon University, 2 University of Waterloo 3 University of California Los Angeles, 4 University of Pittsburgh

Proposed Improvements

(Com-	We improve baseline models by (1)
vords.	from Google, (2) captioning retri
om im-	model (MSCOCO), and (3) genera
	image captions (concatenated to the o
large.	image and caption differs in its qualit
and use	different numbers of captions for eac

Figure 1: Sample retrieved images

Fig. 1 (a)	concept set	{stand, hold, umbrella, stre
	baseline	A holds an umbrella while s
	caption	a woman walking down a st
	VisCTG	a woman stands on a street
Fig. 1 (b)	concept set	{food, eat, hand, bird}
	baseline	a hand of a bird eating food
	caption	a person holding a small bin
	VisCTG	a bird eats food from a han
·		

Qualitative Examples

Method	Text
Concept set	sit, chair, toy, hand (example 1)
Captions	a little girl sitting on a chair with a t
	child sitting on a chair with a teddy
	sitting on a chair with a skateboard
Baseline	hands sitting on a chair
VisCTG	A boy sitting on a chair with a toy in
Human	A baby sits on a chair with a toy in o
Concept set	food, eat, hand, bird (example 2)
Captions	a bird is perched on a branch with a
	holding a small bird in their hand
Baseline	hand of a bird eating food
VisCTG	A bird eats food from a hand.
Human	A small bird eats food from someone

Steven Y. Feng¹, Kevin Lu², Zhuofu Tao³, Malihe Alikhani⁴, Teruko Mitamura¹, Eduard Hovy¹, Varun Gangal¹

retrieving images of given concept sets **ieved images** using a pretrained captioning ating sentences given the concept set plus concept set) as input to the model. Since each ty and coverage of the input keywords, we try ch example, a parameter called **Number of**

eet } standing on the street street holding an umbrella holding an umbrella

ird in their hand

Evaluation Metrics

- CIDEr captures a combo of sentence similarity, grammaticality, etc.
- F-score over the graphs' tuples
- covered by the generated text

Below are the metrics in comparison with other models. T5-base, T5large, and BART-large refer to baselines reported in the original paper.

Models	ROUGE-2	BLEU-4	CIDEr	SPICE	Coverage
T5-base	14.63	18.54	9.40	19.87	76.67
T5-large	21.74	31.96	15.13	28.86	95.29
BART-large	22.02	29.01	13.98	28.00	97.35
EKI-BART	_	35.945	16.999	29.583	_
KG-BART	_	33.867	16.927	29.634	_
RE-T5	_	40.863	17.663	31.079	_
T5-base VisCTG	22.83	34.722	16.173	28.808	92.92
T5-large VisCTG	23.83	36.409	16.815	29.629	95.54
BART-base VisCTG	21.73	32.291	15.187	27.403	88.98
BART-large VisCTG	23.68	36.939	17.199	29.973	94.86

BLEU-4, CIDEr, and SPICE on test_{CG} over different values of NTC for BART-base and T5-base.

Future Work

- or using a stronger captioning model.

GitHub: https://github.com/styfeng/VisCTG

• BLEU, ROUGE, and METEOR measure similarity between the generated and human reference sentences, at a more token-level

• SPICE maps text to semantic scene graphs and calculates an

• Coverage measures the average percentage of input concepts

Results

• Improve image search and captioning, e.g. better selection of images

• Video captioning and image generation can be explored. • Extend VisCTG to other data-to-text NLG tasks, e.g. WebNLG.