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• Semantic text exchange (STE): adjust the semantics 
of text while preserving its sentiment and fluency

• Use cases: text data augmentation and the semantic 
correction of text generated by chatbots/virtual assistants

• SMERTI: a pipeline for STE combining entity 
replacement, similarity masking, and text infilling

• Semantic Text Exchange Score (STES): a single 
score to evaluate a model’s ability to perform STE

• Masking (replacement) rate threshold (MRT/RRT): 
a parameter to control the amount of semantic change

1. Summary

• Original Text: It is sunny outside! That means I must 
wear sunscreen. I hate being sweaty and sticky all over.

• Replacement Entity: rainy
• Desired Text: It is rainy outside! That means I must bring 

an umbrella. I hate being wet and carrying it around.

2. What is Semantic Text Exchange?

• Replace semantically similar words to the replaced entity 
in the input text (above a threshold) with a [mask]

• Group adjacent [mask] tokens into a single [mask]
• Masking (replacement) rate threshold (MRT/RRT): 

maximum percentage of text that can be masked

4. Similarity Masking Module (SMM)

• Two seq2seq models to fill in the [mask] tokens:
o Bidirectional RNN with attention
o Transformer with multi-head self-attention

5. Text Infilling Module (TIM)

Datasets:
• Amazon reviews
• Yelp reviews 
• Kaggle news headlines

Baselines:
• Noun WordNet Model (NWN-STEM) [2]
• General WordNet Model (GWN-STEM)
• Word2Vec Model (W2V-STEM)

6. Experiment Details

Chosen Evaluation REs:
• 10 nouns per dataset
• 10 verbs per dataset
• 10 adjectives per dataset
• 5 phrases per dataset

• Eight participants from the University of Waterloo
• 54 total pieces of text rated on following criteria [1-5]:
o RE match: How related is the text to the RE?
o Fluency: Does the text make sense and flow well?
o Sentiment: How do you think the author of the text 

was feeling? (1 – very negative, 5 – very positive)

7. Human Evaluation

• SMERTI performs best overall (highest STES)
• SMERTI performs best on SLOR and CSS
• WordNet models perform the worst overall
• W2V-STEM achieves the lowest text fluency
• Human and automatic results correlate well
• As MRT/RRT increases, SMERTI’s SPA and 

SLOR decrease while CSS increases

11. Analysis and Discussion

• SMERTI performs strongly on semantic text 
exchange, outperforming baseline models

• Trade-off between semantic exchange against 
fluency and sentiment preservation, controlled by 
the masking (replacement) rate threshold

• Future work: preservation of personality

12. Conclusion

• For each evaluation RE, select one-hundred lines 
from the test set that does not already contain the RE

• Output text evaluated with metrics below:
o Fluency (SLOR) [3]: syntactic log-odds ratio for 

sentence level fluency, rescaled to [0,1]:
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o Sentiment Preservation Accuracy (SPA) [0-1]: 

% of outputs carrying the same sentiment 
(negative, neutral, or positive) as input

o Content Similarity Score (CSS) [0-1]: semantic 
similarity between generated text and RE; higher 
values indicate stronger semantic exchange

o Semantic Text Exchange Score (STES) [0,1]: 
harmonic mean of SLOR, SPA, and CSS; higher 
scores represent higher overall STE performance:
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8. Automatic Evaluation

Figure 3: Graphs of automatic evaluation results

Table 2: Human evaluation results

10. Evaluation Results

Model RE Match 
[1-5]

Fluency 
[1-5]

Sentiment 
Preservation [0-1]

Harmonic 
Mean [0-1]

Input Text 1.82 4.13 --- ---
SMERTI-

Transformer 3.58 2.88 0.75 0.60

SMERTI-RNN 3.50 2.82 0.58 0.54
W2V-STEM 3.48 2.08 0.67 0.44
GWN-STEM 2.25 2.50 0.83 0.42
NWN-STEM 2.13 2.96 1.00 0.45

Input Text: great food , large portions ! my family and i really enjoyed our saturday morning breakfast .
Replacement Entity (RE): pizza

Table 1: Generated output text by model for various masking rates on a Yelp evaluation example

9. Example Outputs

Model MRT/RRT Generated Output
SMERTI-

Transformer
20% great pizza , large slices ! my family and i really enjoyed our saturday morning lunch .
80% great pizza , chewy crust ! nice ambiance and i really enjoyed it.

SMERTI-RNN
20% great pizza , large delivery ! my family and i really enjoyed our saturday morning place .
80% great pizza , amazing pizza ! reasonable and i really enjoyed everyone .

W2V-STEM
20% great pizza , large portions ! my family and i really enjoyed our saturday morning breakfast .
80% awesome pizza, slices slices ! my mom dough we crust liked our sunday morning bagel .

GWN-STEM / 
NWN-STEM 20% great food , large stuff ! my family and i really enjoyed our saturday i breakfast
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It is sunny outside! That means I must wear 
sunscreen. I hate being sweaty and sticky all over.

rainy

It is rainy outside! That means I must wear 
sunscreen. I hate being sweaty and sticky all over.

It is rainy outside! That means I must 
[mask]. I hate being [mask] and [mask].

It is rainy outside! That means I must bring an 
umbrella. I hate being wet and carrying it around.

Figure 2: Illustration of the SMERTI pipeline architecture with an example
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14. References

• Stanford Parser: determine possible words/phrases to 
be replaced by the replacement entity (RE) using 
grammatical structure of the input text and RE

• Universal Sentence Encoder (USE) [1]: identify most 
similar word/phrase to RE (which becomes the replaced 
entity) by computing semantic similarity between their 
embeddings

3. Entity Replacement Module (ERM)
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Figure 1: Semantic similarity heat map
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