

SAPPHIRE: Approaches for Enhanced Concept-to-Text Generation

Steven Y. Feng, Jessica Huynh, Chaitanya Narisetty, Eduard Hovy, Varun Gangal Language Technologies Institute, Carnegie Mellon University

1. Summary

- Motivation: Seeking simple and effective improvements for concept-to-text generation
- Focus: CommonGen or generative commonsense reasoning task, which involves generating logical sentences from a given set of input concepts
- **SAPPHIRE:** Set Augmentation and Post-hoc PHrase Infilling and Recombination
 - Concept set augmentation based on keywords and attention
 - Phrase recombination for generating more logical and coherent sentences

2. CommonGen: Overview and Baselines

- **Task:** input concept set \rightarrow output logical sentence. Examples:
 - {horse, carriage, draw} \rightarrow The carriage is drawn by the horse.
 - {listen, talk, sit} \rightarrow The man told the boy to sit down and listen to him talk.
- **Dataset:** created new dev, test splits (dev_{CG} , $test_{CG}$) from original dev set (dev_{O}) for our experiments since original test set (test_o) is hidden. Training set (train_{CG}) was unaltered

4. SAPPHIRE

4.2 Phrase Recombination

- Motivated by the qualitative analysis, we break down sentences into phrases and reconstruct them (plus original concepts) into new sentences with more coherence
- During training, YAKE is used to extract phrases (2,3,5 n-grams) from human references
- During inference, YAKE is used to extract keyphrases from baseline model generations

• Phrase-to-text (P2T):

- Trains the models to become order-agnostic by piecing the phrases back together
- Input: random permutation of keyphrases + concepts \rightarrow output: human references
- During inference, a single random permutation of keyphrases + concepts as input

• Mask Infilling (MI):

• Interpolates text between test-time input set elements with no training required

Stats	Train _{CG}	Devo	Testo	Dev _{CG}	Test _{CG}
# concept sets	32,651	993	1,497	240	360
# sentences	67,389	4,018	7,644	984	1583

- **Baselines:** trained 4 seq2seq Transformer models BART-base, BART-large, T5-base, T5-large. Performance of our re-implemented models exceeded original reported scores
 - 3. Thorough Baseline Analysis

Correlation Study:

Question	• Does the number of input concepts affect the quality of generated text?
Observations	 Most metrics are positively correlated with concept set size ROUGE-L, CIDEr, SPICE have statistically insignificant correlations Coverage is strongly negatively correlated with concept set size
Takeaways	 Increased concept set size results in greater overall performance Probability of concepts missing from generated text increases with concept set size

- Given an input set $\{c_1, c_2\}$, we feed "< mask > c1 < mask > c2 < mask >" and " < mask > c2 < mask > c1 < mask >" to an MI model (here, we use BART)
- Difficulty: determining the best input set permutation to produce good output text
- Proposal: use perplexity (PPL) from GPT-2 to select the *best* permutations

Original Text	Extracted Keyphrases	New Input Concept Set
A dog wags his tail at the boy.	dog wags his tail	{dog wags his tail}
hanging a painting on a wall at home	hanging a painting	{hanging a painting, wall}
A herd of many sheep crowded together in a stable waiting to be dipped for ticks and other pests	herd of many sheep crowded	{herd of many sheep crowded, dip, waiting}

5. Experiments and Results

- Epochs with best ROUGE-2 score on the dev split are chosen for beam-search decoding
- Human evaluation of fluency and commonsense on 1-5 scales for human references, baseline generations, and SAPPHIRE model outputs for BART-large and T5-base
- Automatic evaluation results on test_{CG}

			BART-base			BART-large				
Metrics \ Methods	Baseline	Kw-aug	Att-aug	P2T	BART-base-MI	Baseline	Kw-aug	Att-aug	P2T	BART-large-MI
ROUGE-1	43.96 ± 0.03	45.01 ±0.00	44.99 ± 0.10	44.87 ± 0.42	44.83	45.67 ± 0.25	46.71 ± 0.05	46.78 ±0.14	46.26 ± 0.29	41.69
ROUGE-2	17.31 ± 0.02	18.33 ±0.06	18.18 ± 0.04	18.04 ± 0.13	17.44	18.77 ± 0.04	19.64 ± 0.05	19.92 ±0.19	19.37 ± 0.17	15.40
ROUGE-L	36.65 ± 0.00	37.28 ± 0.24	37.76 ±0.12	37.28 ± 0.11	34.47	37.83 ± 0.29	38.38 ± 0.01	38.53 ±0.03	38.22 ± 0.16	33.32
BLEU-1	73.20 ±0.28	73.00 ± 0.85	73.00 ± 0.14	73.15 ± 1.06	69.90	74.45 ± 0.21	76.20 ± 0.99	76.55 ± 0.92	77.10 ±0.85	63.90
BLEU-2	54.50 ± 0.14	55.35 ± 0.49	55.70 ±0.28	55.65 ± 0.35	49.00	56.25 ± 0.78	58.60±0.14	59.60 ±0.00	58.95±0.64	42.40
BLEU-3	40.40 ± 0.14	41.35 ± 0.21	41.40 ± 0.28	41.85 ±0.35	34.70	42.15 ± 0.49	44.00 ± 0.00	45.20 ±0.42	44.70 ± 0.14	29.20
BLEU-4	30.10 ± 0.14	31.10±0.14	30.95 ± 0.07	31.75 ±0.35	24.70	32.10 ± 0.42	33.40 ± 0.28	34.50 ±0.42	34.25 ± 0.21	20.50
METEOR	30.35 ± 0.35	30.50 ± 0.28	30.70 ± 0.14	31.05 ±0.49	29.70	31.70 ± 0.14	32.60 ± 0.57	32.65 ± 0.49	33.00 ±0.14	28.30
CIDEr	15.56 ± 0.10	16.18 ±0.12	15.68 ± 0.00	16.14 ± 0.33	14.43	16.42 ± 0.09	17.37 ± 0.08	17.49 ± 0.49	17.50 ±0.02	12.32
SPICE	30.05 ± 0.07	30.45 ± 0.07	30.65 ± 0.35	30.95 ±0.21	28.40	31.85 ± 0.21	33.15 ± 0.49	33.30 ± 0.28	33.60 ±0.00	26.10
BERTScore	59.19±0.32	59.32±0.25	59.72 ±0.03	59.54 ± 0.05	53.73	59.95 ± 0.29	60.83 ± 0.29	60.87 ± 0.45	61.30 ±0.66	48.56
Coverage	90.43 ± 0.17	91.44 ± 0.95	91.23 ± 0.21	91.47 ± 2.93	96.23	94.49 ± 0.53	$96.74{\pm}1.20$	96.02 ± 1.17	97.02 ±0.15	95.33
	T5-base					T5-large				
Metrics \ Methods	Baseline	Kw-aug	Att-aug	P2T	BART-base-MI	Baseline	Kw-aug	Att-aug	P2T	BART-large-MI
ROUGE-1	44.63±0.13	46.42 ± 0.01	46.75 ±0.11	45.73 ± 0.27	44.92	46.26 ± 0.17	47.47 ±0.16	47.40 ± 0.12	46.72 ± 0.26	42.78
ROUGE-2	18.40 ± 0.14	19.36 ±0.24	19.20 ± 0.17	18.51 ± 0.11	17.98	19.62 ± 0.17	20.02 ± 0.07	20.19 ±0.01	19.76 ± 0.22	16.61
ROUGE-L	37.60 ± 0.16	38.68 ±0.08	38.51±0.21	38.07 ± 0.10	34.88	39.21 ± 0.22	39.84 ± 0.12	39.97 ±0.06	39.19 ± 0.09	34.52
BLEU-1	73.60 ± 0.85	76.25 ±0.35	76.00 ± 0.28	75.65 ± 1.20	70.20	77.45 ± 0.21	78.70 ± 0.28	78.95 ±0.07	$77.90 {\pm} 0.57$	66.80
BLEU-2	57.00±0.71	59.55 ±0.64	58.75±0.35	58.15 ± 0.64	50.50	60.75 ± 0.21	62.10 ± 0.14	62.35 ±0.07	61.00 ± 0.42	45.90
BLEU-3	42.75 ± 0.49	45.10 ±0.85	44.00 ± 0.28	43.45 ± 0.07	36.20	46.60 ± 0.14	47.65 ± 0.21	47.95 ±0.21	46.75 ± 0.49	32.70
BLEU-4	32.70 ± 0.42	34.45 ±0.92	33.30±0.28	33.10 ± 0.28	26.10	36.30 ± 0.00	36.80 ± 0.28	37.35 ±0.49	36.10 ± 0.42	23.90
METEOR	31.05 ± 0.49	31.85 ± 0.07	31.90±0.14	32.05 ±0.35	30.20	33.30 ± 0.14	33.55 ± 0.07	33.70 ±0.00	33.35 ± 0.21	29.10
CIDEr	16.26 ± 0.25	17.37 ±0.04	17.04 ± 0.21	16.84 ± 0.11	14.83	17.90 ± 0.15	18.40 ± 0.18	18.43 ±0.10	17.89 ± 0.08	13.34
SPICE	31.95 ± 0.07	32.75 ± 0.21	32.85±0.21	33.20 ±0.14	29.70	34.25 ± 0.07	34.50 ±0.28	33.70 ± 0.14	34.00 ± 0.28	28.00
BERTScore	61.40 ± 0.34	61.88 ±0.06	61.28 ± 0.10	61.46 ± 0.01	55.04	62.65 ± 0.07	62.91 ±0.15	62.78 ± 0.21	62.46±0.11	50.57
Coverage	90.96 ± 1.77	94.92±0.45	96.00±0.03	94.78 ± 0.83	96.03	94.23 ± 0.21	95.92 ± 0.02	96.08 ±0.09	95.44±0.58	96.03

- Qualitative Analysis: Issues observed in generated baseline texts are listed below
 - Sometimes lack commonsense and/or fluency, i.e. outputs often seem more like phrases than fully coherent sentences
 - Can miss important words, e.g. "A listening music and dancing in a dark room"
 - Generally generic and bland, e.g. "Someone sits and listens to someone talk"
 - Improper ordering of sentence segments, e.g. "body of water on a raft"

4. SAPPHIRE

4.1 Concept Set Augmentation

- Motivated by the correlation study to improve performance and coverage, we augment concept sets with additional words (from 1 to 5 words) as new inputs to the models
- During training, additional keywords are extracted from the human references
- During inference, they are extracted from the baseline model generations
- Keyword-based Augmentation (*Kw-aug*):
 - Use KeyBERT to extract keywords from the texts
 - Calculate average semantic similarity of candidate keywords with original concept set

• Add remaining candidate with highest similarity at each augmentation stage

• Automatic evaluation results on hidden test_O (evaluated by the CommonGen authors)

Models\Metrics	ROUGE-2/L		BLEU-3/4		METEOR	CIDEr	SPICE	Coverage
T5-base (reported baseline)	14.63	34.56	28.76	18.54	23.94	9.40	19.87	76.67
BART-large (reported baseline)	22.02	41.78	39.52	29.01	31.83	13.98	28.00	97.35
T5-large (reported baseline)	21.74	42.75	43.01	31.96	31.12	15.13	28.86	95.29
EKI-BART (Fan et al., 2020)	-	-	-	35.945	-	<u>16.999</u>	29.583	-
KG-BART (Liu et al., 2021)	-	-	-	33.867	-	16.927	29.634	-
RE-T5 (Wang et al., 2021)	-	-	-	40.863	-	17.663	31.079	-
BART-base-P2T	20.83	42.91	40.74	29.918	30.61	14.670	26.960	92.84
T5-base-P2T	22.38	44.59	44.97	33.577	31.95	16.152	29.104	95.55
BART-large-KW	22.25	43.38	43.87	32.956	32.26	16.065	28.335	96.16
BART-large-Att	22.22	43.80	44.61	33.405	32.03	16.036	28.452	96.43
BART-large-P2T	22.65	43.84	44.78	33.961	32.18	16.174	28.462	96.20
T5-large-KW	23.79	45.73	48.06	37.023	32.85	16.987	29.659	95.32
T5-large-Att	23.94	45.87	47.99	36.947	32.79	16.943	29.607	95.43
T5-large-P2T	23.89	45.77	48.08	37.119	32.94	16.901	<u>29.751</u>	94.82

• Human evaluation results on test_{CG} • Qualitative example with model outputs

Model	<u>Method</u>	Fluency	Commonsense	Concept Set	{sit, chair, toy, hand}
BART-large	Baseline Kw-aug	3.92 4.13 4.10	4.06 3.92 4.06	Baseline	hands sitting on a chair
	Att-aug P2T	4.17	4.13	Kw-aug	A boy sits on a chair with a toy in his hand.
T5-base	Baseline Kw-aug	4.02	3.83 4.04	Att-aug	A child sits on a chair with a toy in his hand.
	Att-aug P2T	4.13 4.02	3.98 4.08		
Huma	an	4.14	4.32	P2T	Hands sitting on a chair with toys.

Original Concept Set	Added Words
{match, stadium, watch}	{soccer, league, fans}
{family, time, spend}	{holidays}
{head, skier, slope}	{cabin}

• Attention-based Augmentation (*Att-aug*):

- Pass texts through BERT and return the attention weights at the last layer
- Identify words in the text that are most attended upon in aggregate
- Add remaining candidate with the highest attention at each augmentation stage

Original Concept Set	Added Words
{boat, lake, drive}	{fisherman}
{family, time, spend}	{at, holidays}
{player, match, look}	{tennis, on, during}

6. Conclusion and Future Work

- Proposed several improvements called SAPPHIRE for concept-to-text generation
- Demonstrated its effectiveness thoroughly on the CommonGen task with BART and T5
- Possible to explore various combinations of proposed SAPPHIRE methods
- Also possible to try improving the performance of the mask infilling approach
- Can study SAPPHIRE on other data-to-text tasks like WebNLG, for dialog agents, etc.