GenAug: Data Augmentation For Finetuning Text Generators

Steven Y. Feng^{*1}, Varun Gangal^{*1}, Dongyeop Kang², Teruko Mitamura¹, Eduard Hovy¹

¹Language Technologies Institute, Carnegie Mellon University

²University of California, Berkeley

1st DeeLIO Workshop, EMNLP 2020

Introduction

GenAug: data augmentation for finetuning text generators
Propose and evaluate various augmentation methods
Investigate effects of the amount of augmentation
Finetuning GPT-2 on a subset of Yelp Reviews
Evaluate various aspects of the generated text

The Need for Augmentation for Generation

- Large pretrained generators like GPT-2 \rightarrow Possibility to perform generation in many new domains and settings
 - In particular, low-resource domains with very little data
- GPT-2 still needs to be finetuned to the specific domain!
- Without this, it can't pick up:
 - Length characteristics
 - Stylistic variables (e.g. formality, sentiment)
 - Domain-specific word choices
- Apart from specific tasks like MT, most augmentation methods in NLP have been focused on classification

Why Not Use Same Methods Directly?

Reason I: Generation is much more sensitive to the quality of "x"

- ► In classification: Maximize P(y* | x)
 - Using augmentation: Maximize $P(y^* | x')$
 - Since x' goes into conditional \rightarrow More leeway for how noisy x' can be.
 - Thinking of in model terms, as long as encoder representations shift only slightly, we can vary x' quite a bit
- ► In generation: Maximize $\Pi_i P(x_i | x_1, x_2, \dots, x_{i-1})$
 - x' is both the target and the conditional
 - Affects loss and hence learning directly

Why Not Use Same Methods Directly?

- Reason II: Generation requires improving or maintaining performance on multiple metrics, not just the training loss
- Fluency: How fluent, grammatical, and natural is the text?
- Diversity: How diverse are the outputs given the same input?
- Coherence: Does the generated text maintain the same topic as the generation continues?
- Hence, methods that seemingly reduce training loss could still degrade other aspects of the text such as diversity

GPT-2 (Radford et al., NAACL '19)

- OpenAI GPT-2 = Generatively Pretrained Transformers
- A left-to-right Transformer with 12 layers, ~117M parameters
- > Pretrained on WebText \rightarrow Corpus of newswire, forums, etc.
- Trained like a typical LM, maximize likelihood of word | left context
- Can be further fine-tuned by giving appropriately constructed text
- Conditional generation: complete discourse given prompt

Yelp Reviews Dataset

- Contains user reviews on businesses
- Substantially different in domain from GPT-2's training data
- Contains long reviews that carry sentiment (1-5 star ratings)
- YLR: Randomly select a small subset, ~1%, for GenAug experiments
- Simple baseline: finetuning GPT-2 on YLR only

Augmentation Methods

- Suite of perturbation operations to generate augmented examples per original YLR review
- Motivated by intuition, greater focus on modestly meaning-altering perturbations, which toggle specific aspects of the text
- Synthetic Noise: character-level
- Synonym: word choice
- Hypernym/Hyponym: word granularity
- STE : topic-level semantics

Method	Text
Original	got sick from the food . overpriced and the only decent
	thing was the bread pudding . wouldn't go back even if i
Keview	was paid a million dollars to do so .
Synthetic	got seick from the fotod . overhpriced and the only
Noise (10%)	decent ting was the bread pudding . wouldn't go back
Noise (1076)	even if i was paid a million dollars to do so .
Synonym	got sick from the food . overpriced and the only decent
Replacement	thing was the scratch pud . wouldn't go back even if i
(3 keywords)	was paid a one thousand thousand dollars to do so .
Hyponym	got sick from the food . overpriced and the only decent
Replacement	thing was the crescent roll corn pudding . wouldn't go
(3 keywords)	back even if i was paid a million kiribati dollar to do so .
Hypernym	got sick from the food . overpriced and the only decent
Replacement	thing was the baked goods dish . wouldn't go back even
(3 keywords)	if i was paid a large integer dollars to do so .
Random	got sick from the food nauseous . overpriced and the only
Insertion	decent thing was the bread pudding . wouldn't go back
(10%)	even if i was paid a million dollars boodle to do so .
Semantic Text	got sick from the coffee . overpriced and the food was
Exchange	good . wouldn't come back if i was in a long hand
(60% MRT)	washing machine .

Baseline: Random Trio

- Based on EDA: Easy Data Augmentation Techniques For Boosting Performance on Text Classification Tasks (Wei et al., EMNLP '19)
 - Suite of simple, easy-to-implement random perturbation operations
 - Select one randomly each time to create augmented example
 - Tested on five classification tasks: SST-2, CR, SUBJ, TREC, Pro-Con

Operation	Sentence
None	A sad, superior human comedy played out
	on the back roads of life.
SR	A lamentable, superior human comedy
	played out on the <i>backward</i> road of life.
RI	A sad, superior human comedy played out
	on <i>funniness</i> the back roads of life.
RS	A sad, superior human comedy played out
	on <i>roads</i> back <i>the</i> of life.
RD	A sad, superior human out on the roads of
	life.

Table 1: Sentences generated using EDA. SR: synonym replacement. RI: random insertion. RS: random swap. RD: random deletion.

Baseline: Random Trio

- Easy Data Augmentation Techniques For Boosting Performance on Text Classification Tasks (Wei et al., EMNLP '19)
- Improvements observed on all five classification tasks

Random Trio: take three of these perturbation operations for GenAug: random swap, random insertion, random deletion

Synthetic Noise

- Intuition: perturbations at the character-level shouldn't perturb overall input representation
- > Already happens in most corpora \rightarrow e.g. spelling mistakes
- To more closely mimic humans, the first and last character of each word are left unperturbed
- Only perturb the prompt portions of reviews
- $\blacktriangleright E.g. \textbf{ sick} \rightarrow \textbf{seick} , \textbf{ food} \rightarrow \textbf{fotod}$

Keyword Replacement

- Replace keywords within YLR reviews with other words using WordNet
- 1. <u>Synonyms (WN-Syns)</u>: Replace with a synonym of the same POS (e.g. *large* \rightarrow *huge*)
- <u>Hypernyms (WN-Hypers)</u>: Replace with parent-word (of the same POS) from WordNet taxonomy (e.g. *dog → mammal*, *dollar → currency*)
- <u>Hyponyms (WN-Hypos)</u>: Replace with child-word (of the same POS) from WordNet taxonomy (e.g. *food* → *beverage*, *dragon* → *wyvern*)

Semantic Text Exchange (STE)

New task proposed in Keep Calm and Switch On! Preserving Sentiment and Fluency in Semantic Text Exchange (Feng et al., EMNLP '19)

▶ <u>Example:</u>	Original text:	This pepperoni pizza is great! The crust is filled with cheese and it comes with many toppings .	
	Replacement entity:	sandwich	
	Desired output text:	This ham sandwich is great! The bread is filled with grains and it comes with many fillings .	

- We use SMERTI: entity replacement, similarity masking, text infilling
- Entity to replace: noun keywords/phrases (to maintain diversity)
- Entity that replaces (RE): a noun keyword/phrase from training data
- Intuition: alter semantics of the entire text w.r.t. a particular topic

Augmentation Amounts

- Explore the effects of the amount of augmentation
- ► Test out 1.5x, 2x, 3x, and 4x augmentation
- ► E.g. $4x \rightarrow$ each example has three augmentations
- Use combination of Synthetic Noise, STE, and keyword replacement
 - Each method augments 1/3 of YLR training examples

Evaluation: Text Fluency

Do the continuations sound like good, acceptable English?

1. **PPL (**): Perplexity according to a language model M $PPL(S) = exp(-\frac{1}{|S|}ln(p_M(S)))$

2. **SLOR (**[†]): PPL but normalizes for word frequency

$$SLOR(S) = \frac{1}{|S|} (ln(p_M(S)) - ln(\prod_{t \in S} p(t)))$$

Evaluation: Text Diversity

Are the continuations sufficiently non-repetitive? (Inter + Intra)

1. **SBLEU (\downarrow)**: The highest BLEU with one of the other continuations

$$E_{s\sim S}[BLEU(s, S - \{s\})]$$

- 2. **UTR (^**): Ratio of unique to total trigrams, aggregated over all continuations
- 3. TTR (1): Mean ratio of unique to total tokens per continuation

Evaluation: Semantic Content Preservation (SCP)

Do continuations have content related to the input prompt?

BPRO (): Avg. BERTScore* between prompt and continuation

 Measures strength of pairwise alignment between BERT embeddings of prompt and continuation

* As originally proposed in BERTScore: Evaluating Text Generation With BERT (Zhang et al., ICLR '20)

Evaluation: Sentiment Consistency

SentStd (1): Average standard deviation of sentiment among each batch of 100 continuations

- Do all continuations per input prompt have similar sentiment?
- SentDiff (1): Mean abs. difference between sentiment of generated continuations (each concatenated with the input prompt) and ground-truth YLR reviews
 - Do continuations carry sentiment aligning with ground-truth text?

Examples of Generated Outputs

Method	Text
Prompt	i got my hair and make up done here for my wedding on 12 29 13 . everything was amazing . hannah styled my hair and the results were pure perfection . i
Original	wish my hair could look like that everyday . i only have positive things to say about this place and would definitely recommend this place . i loved everything about this place !
Gold (Yelp-LR)	went home feeling amazing. you get a full set that changes throughout the year. thanks so much again hannah! you did an awesome job for me and my mom.
Synthetic Noise	am forever thankful for hannah and her store. she's been so nice and accommodating to my needs. she explained my wants and what i could do and she never backed off. i will definitely be back to her store. this is a terrific place for professional hair and make up
WN-Hypers	am so happy i came here and will absolutely continue coming here to get my perfect cut. i left well satisfied. i love this place! thanks yelpers and thank you hannah and make up artist anthony! you've earned my trust
2x	highly recommend this salon. they even have some coupons on their site. i also got my eyebrows and lip waxing here. very affordable too! i'll be back for sure
3x	couldn't believe how beautifully my hair turned out. my stylist was very quick and made sure to check on my hair every step of the way. the environment is a bit loud, but the receptionists and staff make up for it with a great quality of service and product. the price is right for the quality of the work. you'll definitely want to check this place out. i can't wait to return
4x	have to say i will definitely return to this salon. it's very romantic and upscale, all of the staff is very friendly and welcoming. i would definitely recommend this place to anyone who wants a beautiful hairdresser

Table 4: Examples of generated continuations from GPT-2 finetuned on select augmentation methods & amounts. *Prompt* is the first half of the original Yelp review fed in as input, and *Original* is the ground-truth continuation.

Evaluation Results - Methods

20

Two baselines:

- Gold (Yelp-LR): finetuning without augmentation
- Random Trio: three methods within EDA

Synthetic Noise and WN-Hypernyms outperform on almost all metrics

Variations	Gold (Yelp-LR)	Random Trio	<u>STE</u>	Synthetic Noise	WN-Syns	WN-Hypos	WN-Hypers
SBLEU (↓)	0.2639	0.2727	0.2776	0.2572	0.2789	0.2691	0.2651
UTR (†)	0.6716	0.6660	0.6495	0.6925	0.6540	0.6669	0.6808
TTR (†)	0.7173	0.7176*	0.7056	0.7461	0.6978	0.7129	0.7296
RWords (\downarrow)	-6.0637	-6.0718	-6.0508	-6.1105	-6.0801	-6.0895	-6.0841
SLOR (↑)	2.9377	2.9404*	2.8822	2.9851	2.9368*	2.9373*	2.9447
BPRO (†)	0.0969	0.0994	0.0928	0.1022	0.0899	0.0925	0.1038
SentStd (↓)	0.0852	0.0836	0.0837	0.0821	0.0864	0.0859*	0.0827
SentDiff (↓)	0.0783	0.0773	0.0777*	0.0762	0.0782*	0.0793	0.0768

Table 2: Average results by variation. Bold values indicate results better than Gold (Yelp-LR). Arrows beside each metric indicate whether lower or higher is better. * indicates insignificant values (using an α of 0.05).

Methods: Fluency and SCP

SLOR (\uparrow) by Variation

BPRO (个) by Variation

Methods: Diversity

SBLEU (\downarrow) by Variation

SBLEU --- Gold (Yelp-LR) SBLEU

UTR (\uparrow) & TTR (\uparrow) by Variation

Methods: Sentiment Consistency

SentStd (\downarrow) & SentDiff (\downarrow) by Variation

Analysis (I) – Synthetic Noise

Could Synthetic Noise be cheating its way to diversity by spuriously changing characters?

- Synthetic Noise would have more spelling errors than gold
- We run a spell-check on its outputs to assess this
 - **SpellWords (**): Avg. # of misspelled words per continuation
 - **SpellChars (**↓): Avg. # of character-level spelling mistakes per continuation
- Synthetic Noise actually reduces spelling errors

Spellcheck	Gold (Yelp-LR)	Synthetic Noise
SpellWords (↓)	3.0024	2.6274
SpellChars (↓)	4.5804	3.9190

Analysis (II) – Hypernyms vs. Hyponyms 25

- Why does WN-Hypers perform much better than WN-Hypos?
- Hyponyms sometimes introduce esoteric, rare words, which seldom occur apart from very specific contexts
 - E.g dragon \rightarrow wyvern, dollar \rightarrow Kiribati dollar
- Unlike hyponyms, hypernym replacement maintains faithfulness to the original text. Example:
 - Hypernym: 3 dogs walked home. \rightarrow 3 animals walked home.
 - Hyponym: 3 dogs walked home. \rightarrow 3 Dalmatians walked home.

Analysis (III) – Semantic Text Exchange

- We perform STE using a sliding-window approach with 30-word windows: STE is performed on each and then concatenated
- Each window contains a randomly selected RE
- This may result in semantic inconsistencies between windows
 - E.g. with REs "coffee" and "hand":

STE using SMERTI was also shown in Feng et al., 2019 to reduce fluency got sick from the food . overpriced and the only decent thing was the bread pudding . wouldn't go back even if i was paid a million dollars to do so .

> Semantic Exchange

26

got sick from the coffee . overpriced and the food was good . wouldn't come back if i was in a long hand washing machine

Analysis (IV) – Random Trio & WN-Syns

Random Trio: random word-level noise seems to lead to poor generations and is much less suitable for GenAug

27

WN-Syns: synonym replacement likely does not adjust semantics of the text sufficiently and results in overfitting

Amounts: Fluency and SCP

SLOR (\uparrow) by Amount

BPRO (\uparrow) by Amount

Amounts: Diversity

SBLEU (\downarrow) by Amount

UTR (\uparrow) & TTR (\uparrow) by Amount

Amounts: Sentiment Consistency

SentStd (\downarrow) & SentDiff (\downarrow) by Amount

Conclusion

- We introduced GenAug: data augmentation for text generation, specifically finetuning text generators
- We proposed a new suite of augmentation methods and evaluation metrics adapted for GenAug
- Two methods: Synthetic Noise and Keyword Replacement with Hypernyms outperformed a random augmentation baseline and the no-augmentation case
- Our augmentations improve quality of the generated text up to 3x the amount of original training data

Thanks for Listening!

- Steven Y. Feng: syfeng@cs.cmu.edu Website: https://styfeng.github.io/ Twitter: @stevenyfeng
- Varun Gangal: vgangal@cs.cmu.edu \succ Website: https://www.linkedin.com/in/varungangal/ Twitter: @VarunGangal
- Dongyeop Kang: dongyeopk@berkeley.edu \succ Website: https://dykang.github.io/ Twitter: @dongyeopkang
- Teruko Mitamura: teruko@cs.cmu.edu
- Eduard Hovy: hovy@cs.cmu.edu

https://github.com/styfeng/ GenAug

https://arxiv.org/abs/2010.01794

Method	<u>Text</u>
Original Review	got sick from the food . overpriced and the only decent
	thing was the bread pudding . wouldn't go back even if i
	was paid a million dollars to do so .
Synthetic	got seick from the fotod . overhpriced and the only
Noise (10%)	decent ting was the bread pudding . wouldn't go back
Noise (10%)	even if i was paid a million dollars to do so .
Synonym	got sick from the food . overpriced and the only decent
Replacement	thing was the scratch pud . wouldn't go back even if i
(3 keywords)	was paid a one thousand thousand dollars to do so .
Hyponym	got sick from the food . overpriced and the only decent
Replacement	thing was the crescent roll corn pudding . wouldn't go
(3 keywords)	back even if i was paid a million kiribati dollar to do so .
Hypernym	got sick from the food . overpriced and the only decent
Replacement	thing was the baked goods dish . wouldn't go back even
(3 keywords)	if i was paid a large integer dollars to do so .
Random	got sick from the food nauseous . overpriced and the only
Insertion	decent thing was the bread pudding . wouldn't go back
(10%)	even if i was paid a million dollars boodle to do so .
Semantic Text	got sick from the coffee . overpriced and the food was
Exchange	good . wouldn't come back if i was in a long hand
(60% MRT)	washing machine .